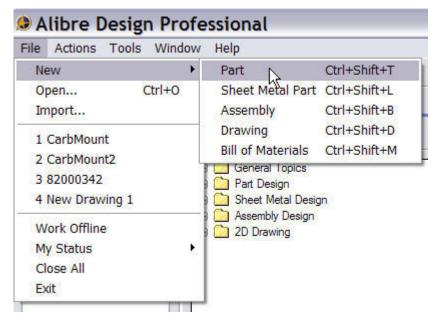
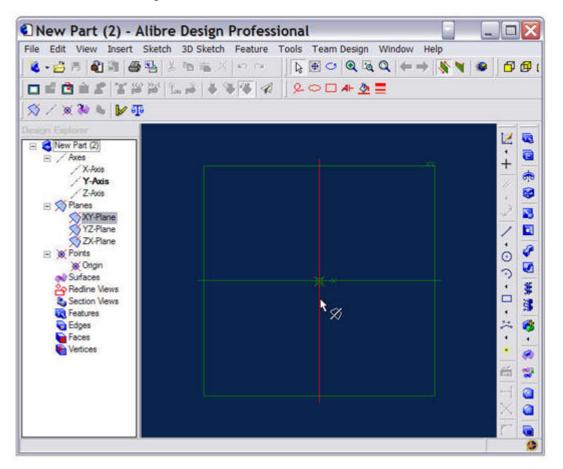
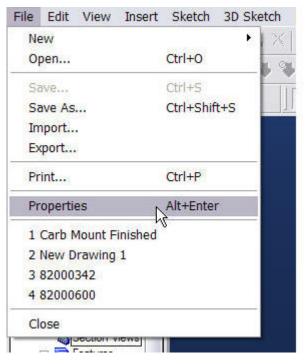

Motor Mount An Alibre Design Tutorial By CDS



Written by Steve Carr All Rights Reserved @by CDS 04-15-06 This tutorial will introduce you to many of the tools, workbenches, and methods you will use in your daily work. The part you'll create is an aluminum casting. It should take less than two hours to complete. Many aspects of basic design work are touched on in this exercise, but no single tutorial can showcase all of the capabilities of Alibre. Please feel free to contact me with any corrections, or suggestions on ways to improve the material.


The drawing below will give you all the information required to create the Motor Mount and serve as a reference in the part design process.



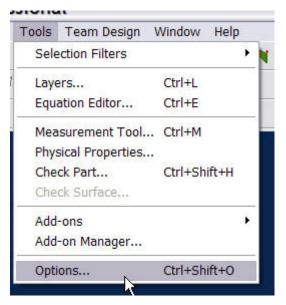
We need to set a few basic parameters in Alibre before we start the actual design process. In the Alibre Design Main panel, click on File>New>Part.

The New Part window opens.

Under the File menu tab, select Properties.

The Design Properties panel will open. Click on the 'Units' tab and select Millimeters.

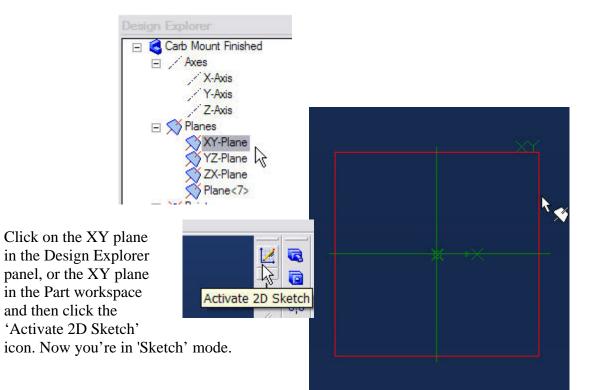
General	Units	Dimension	Material	Display	Apply Opti	ons
Shov	w Units f	or Dimensions	6			
Displa	y Units				how Dual D	Dimensio
Leng	th		Q.11-10		ngth	
Unit	:	Inches	*	Ur	it	Millin
Form	at:	Millimeter		Fo	rmat:	Dec
Preci	sion:	Meters	ala NC	Pre	ecision:	3
L		Inches Feet				
Zero	Suppres	ssion Feet & Ind	ches	n Ze	ro Suppress	sion —
	eading	Trailin			Leading	
Angle	e			D Plac	ement	Belo
Angle	e:	Degrees	~	- iau	onions:	Deid
Preci	sion:	3	~			
Mass				5		
Unit:	•	Lbm	(++	11		
		LDM	~			


Under the 'Material' tab, scroll down in the selection window and click on 'Aluminum – cast – hammered'. This will set the material properties for our model, allowing us to determine the mass, and volume of the part as well as the center of mass, surface area, and moments of inertia.

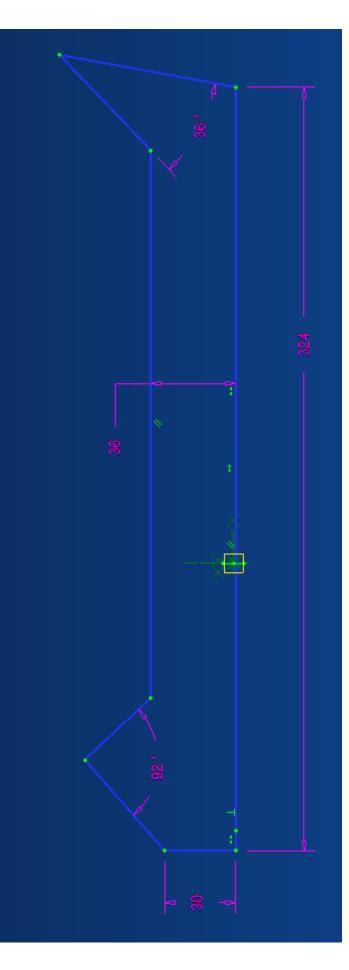
General	Units	Dimension	Material	Displa	
Densit	y				
Mate	rial:				
Custo	m		~		
inclusion and the		st-hammered	^		
Alumir	num, 202 num, 606	61-T6			
Alumir	num, 707	79-T6			
Brass	- cast-ro				
	e - alumi e - phosi		~		

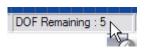
Under the Apply Options tab, check the radio button for 'The Current Document'.

🧶 Desi	gn Pr	operti	es				
General Apply (Units Changes	Dimension To	Material	Display	Apply Option	ns	
54	e Current tem	Document					
OBot	h						
				App	oly	Close	0


Go back to the main panel toolbar and locate 'Tools'. Under the 'Tools' menu tab, select 'Options'.

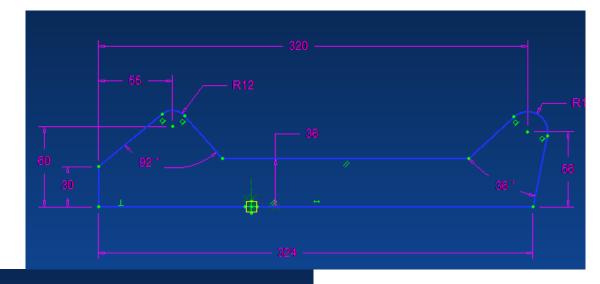
The 'Options' panel will open. Under the 'Grid' tab change the spacing settings to 1mm for X, Y, and Z. Make sure the 'Display grid', and 'Snap to grid' boxes are checked. Click OK to return to the New Part window.

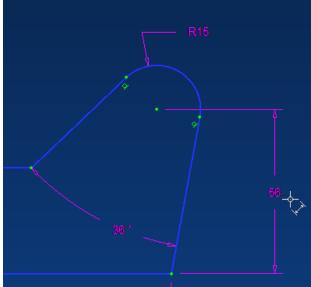

Options General Grid File Types Color S	cheme Interoperability
Grid Spacing X*: 1 mm Y: 1 mm Z': 1 mm	 ✓ Display grid ✓ Snap to grid


File Edit View In	isert Sketch 3D Sk	et
Open	Ctrl+O	
Save	Ctrl+S	f
Save As Import Export	Ctrl+Shift+S	
Print	Ctrl+P	In the New Part window under the File menu tab, select 'Save'. Select a
Properties	Alt+Enter	location to save the file, either in the
1 Carb Mount Finis 2 New Drawing 1 3 82000342	shed	Windows File System or in your loc repository. Give the part a logical name, and click OK.
Save		
Kotor Mount	Repository File System	
	irectory name:	FileName ^
	:\Documents and Settings	s\Steve C
	 €	g Manu
	rives:	Browse
1	Name: Moto	or Mount New Folder
	Moto	Advanced
		Save Cancel

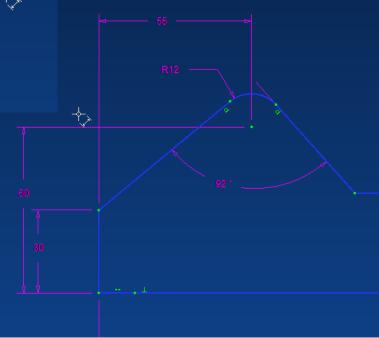
We'll start our design by drawing a sketch similar to the one at the left. The picture has been rotated 90 counter clockwise, which places the X-axis in the vertical orientation. The sketch only needs to be a close approximation to what we want the final part to look like. In most of the following pictures, the sketch grid has been turned off, simply for the sake of clarity. You should leave your grid turned on to aid you in your sketch work. Now apply the five dimensions shown at the right. These dimensions will 'lock in' the overall shape of out part, and establish an important set of relationships.

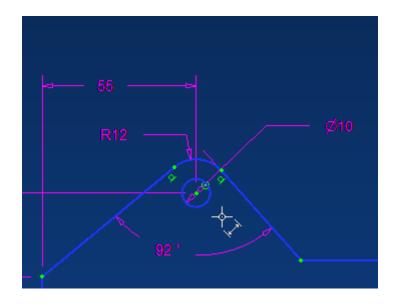
Dimensioning and constraining sketches is one of the most important aspects of good design work. You'll notice in the lower right hand corner of the Alibre main panel screen a running script labeled DOF (Degrees of Freedom). Reducing the DOF's to zero, through dimensional or geometric constraints, although not always necessary, is good design practice. You can produce parts and features with sketches that have unresolved DOF's, but my advice is to reduce the DOF's to zero through use of dimensions or geometric constraints to insure the stability of the model data. If you find that you can't reduce the DOF's by manual insertion of the dimensions and constraints, use the Auto Dimension command under the Sketch menu tab to complete the task. In this case, we have a lot more dimensioning work to complete, so ignore this for the present.

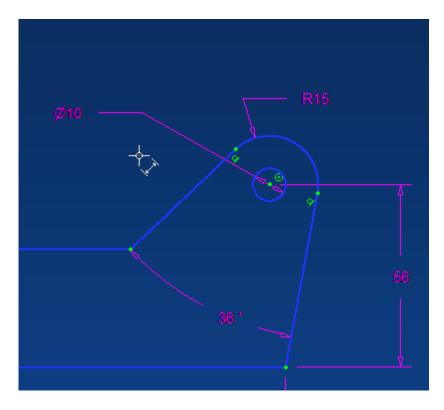


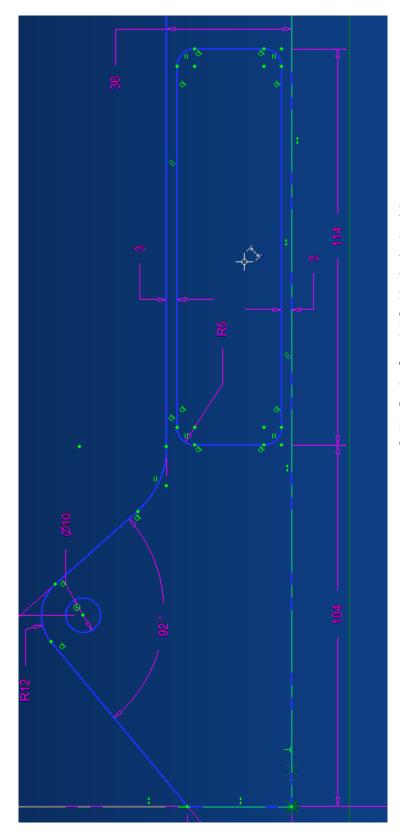


Select the 2D Fillet command and Insert two fillets as shown in the pictures at the right.

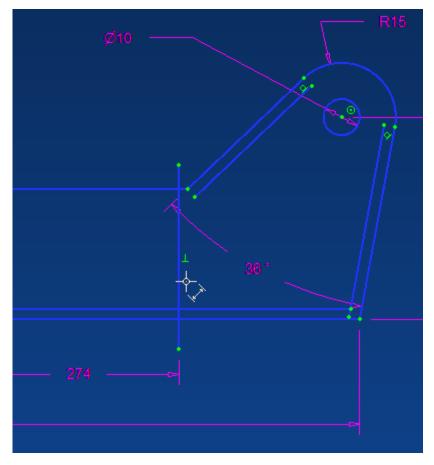

Fillet Figures Figures to fillet: Line <4> Ine <4> Radius: 15 Apply Close 26*
Fillet Figures Figures to fillet: Line<7> Line<6> Radius: 12 Qply Close
92*

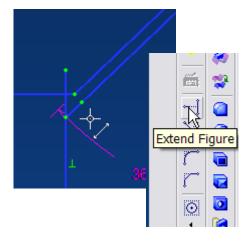

Dimension them as shown. When complete your sketch should look like the picture at the right, and the one below.

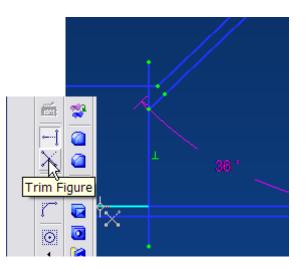


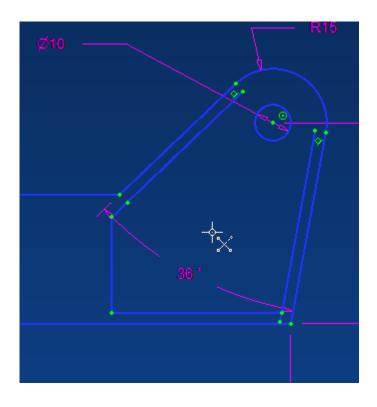

Add the 320mm and 55mm horizontal linear dimensions before adding the 56mm and 60mm vertical dimensions. Adding the dimensions in this order further constrains the overall shape of the sketch. Try it the other way to see what the results are.

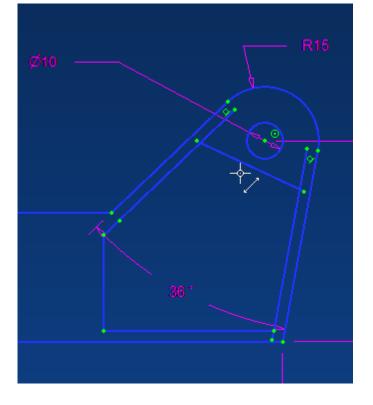
Insert the two 10mm diameter holes as show in the pictures. You could insert these holes in the finished model as a 'hole feature' using the 'Hole' command. This is considered a best practice rule when working with solid features. Exceptions to this rule include inserting holes, fillets, or chamfers in the sketch when such features constitute a basic, unchanging feature of the part, i.e. not a dress-up feature. In this case, we'll treat all holes and fillets as basic features of the casting.


Any sketch created within the boundaries of the outer sketch will propagate as a cutout when the sketch is extruded. To create the rectangular cutout in the motor mount, sketch and dimension the shape shown at the left.

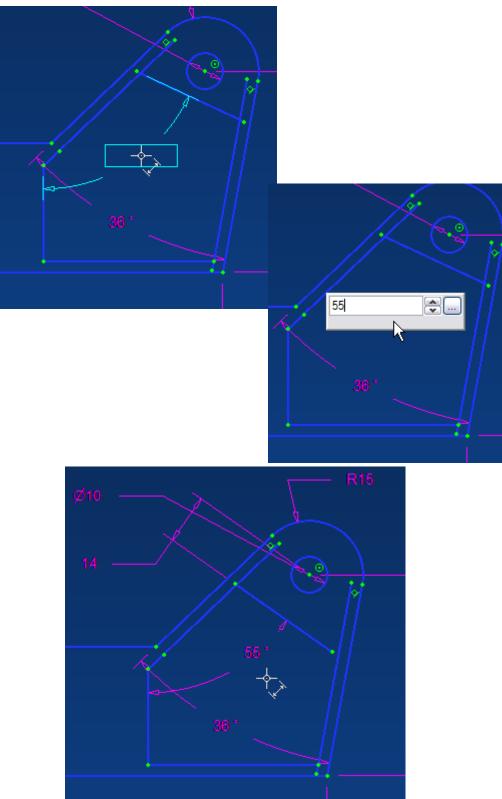

To make the task a little easier, use the Rectangle by Two Corners tool to create the initial sketch, then add the fillets and dimension it.


To create the next to command to create horizontal line.				
	Offset Figures to of		2	
	Line<3> Distance: Gap Type	3 mm Pip direction Natural OK	Cancel	R15

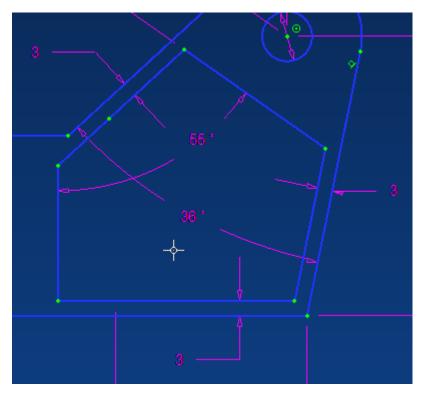

Now add and dimension the vertical line shown in the sketch below. The 274mm dimension is taken from the far left vertical sketch line.



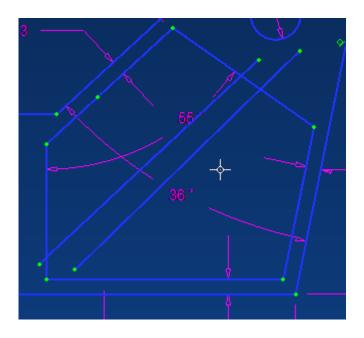
Now use the Extend Figure and Trim Figure commands to clean up your sketch.

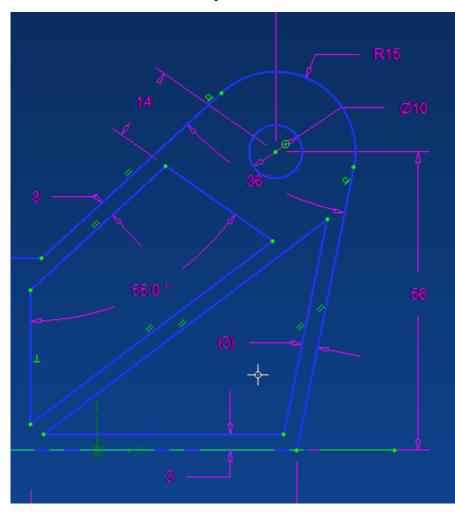


When finished the results should look like this,

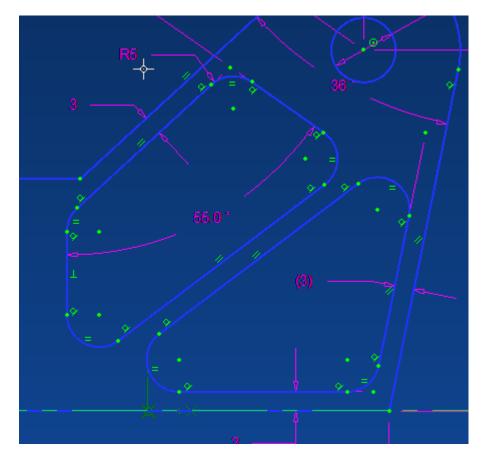


Add the angle line shown at the left.


Dimension the line as shown.



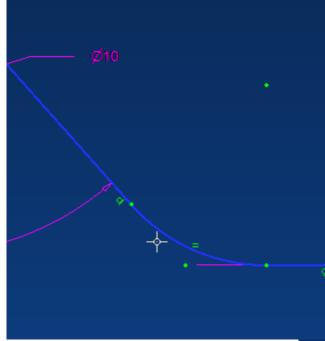
Trim the lines until you have the shape shown below.



Insert two angled lines as shown.

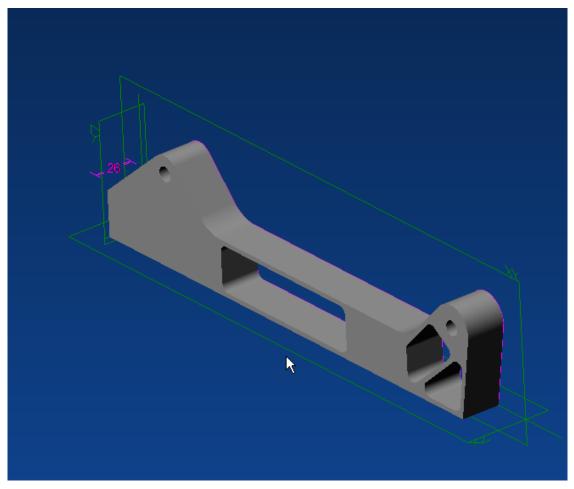
Extend and Trim the lines, and insert the parallel constraints as shown.

Next, insert the seven, 5mm corner fillets shown.




It might be necessary to add a Tangent constraint between the line and arc shown to bring the cutout figures into correct alignment. To do this, open the constraint tool, select Tangent Constraint, click on it to make it active, and then click on the line and then the arc.

Your sketch should now look like this. (The dimensions and constraints have been hidden to clarify the sketch.)

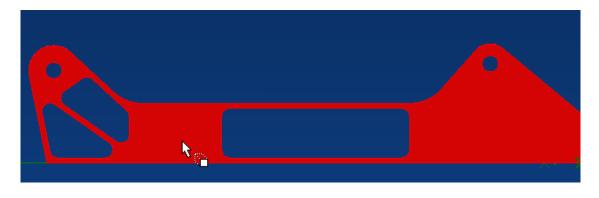

Now add the 25mm fillets. Again, we could create these as a dress up features after we extrude the basic motor mount shape, but for this case, we can consider them basic features of the part, not subject to change, so we'll include them as part of the sketch.

It's now time to extrude our sketch and create the basic, motor mount shape. It would be a good idea at this point to use the Sketch Analyze tool to check your sketch for problems before you extrude it.

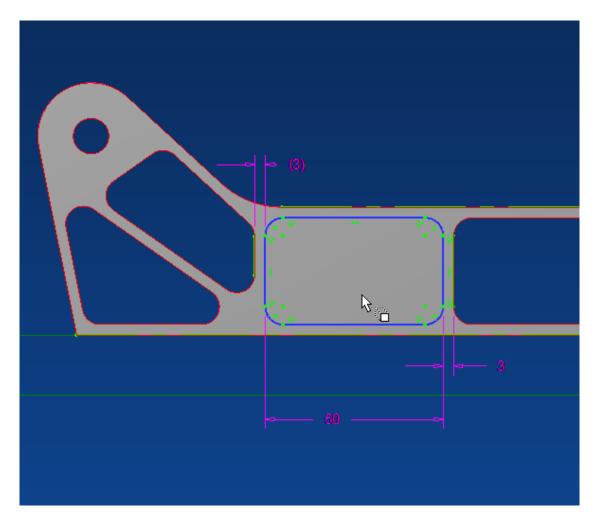
Select Extrude Boss.	ude Boss
Sketch Sketch<1> Direction Along Nomal Select Draft Angle 0 Outward	Type: To Depth 26 mm Reverse To Geometry Target:
Label: Edmusion<1>	OK Cancel

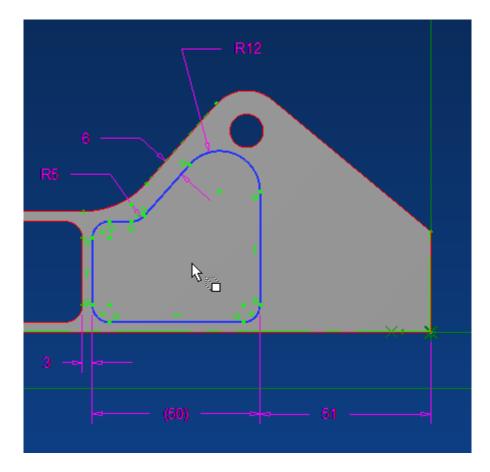
Select the sketch if it is not already selected, then select To Depth as Type, and enter 26mm as the Depth, then click OK.

Your part should now look like this.


Change the view orientation in the position shown below.

until the motor mount is

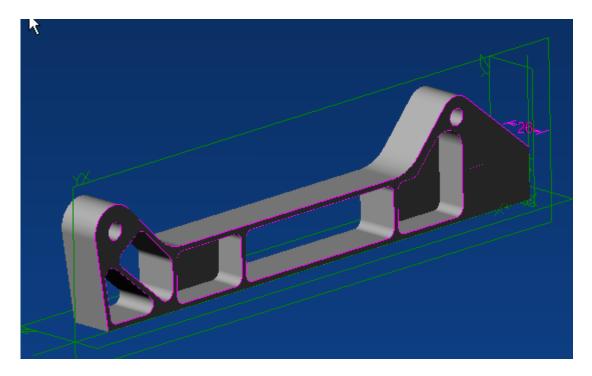

Select the face of the motor mount,



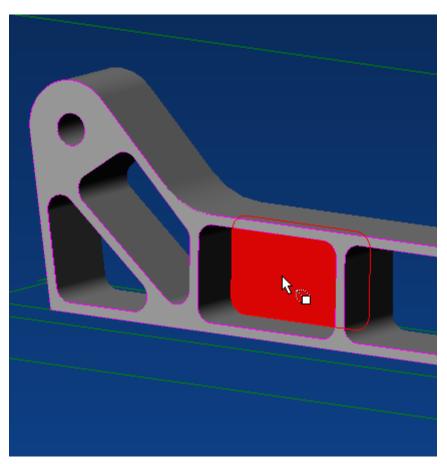
then select Activate 2D Sketch.

	112	
	H.	
1	-RG	

Now we need to add the two 18mm deep pockets. We'll add both pockets at the same time. Create and dimension the sketches shown in the following two pictures. Use the Rectangle by Two Corners tool for the left hand pocket.



Click on Extrude Cut.


Select the newly created sketch if it is not already selected, select To Depth as the Type, insert 18mm as the Depth, and click OK. (Part rotated to clarify direction of depth cut.)

Sketch	Туре:
2-Sketch<2>	To Depth
Direction	Depth
Along Normal	18 mm 🚔 📖
Select	
	To Geometry
Draft Angle	Target:
	Offset:
Outward	
Label: Extrusion<2>	
	OK Cancel
	No.

Your part should now look like this.

Now we need to add the two sets of holes. Select the bottom face of the first pocket. then select Activate 2D Sketch.

Click on the Hole icon.

The Insert Hole Panel opens. Set the diameter to 5mm, the Type as Simple, the Depth condition as Through All, and then click OK.

	Hole Start surface:		Specification			
	Face<9>					
	Type: Simple			- - -		
	Type: Simple Depth condition:	~			Ī	
	Through All	~			Depth:	
	Limiting geometry:	- Announced	N		5 mm	
			R			-
	Limiting geometry					
		-			Ļ	
	Threads Series: None			 ←→	Diameter:	
	Type:		Source:	•	5 mm	
			Minor			
<u> </u>		Deptł 🗸	Name			
	Custom:		Label: Hole<3>			
				ОК	Cancel	0
				UN		
				🕁 Sketch<1	>	
				vtnueion 2		
				xtrusion<2>	5	
hole appears in	the pocket. We	now nee	i ∃ ⊡ ⊡ be	52 Sketch<2 lole<3>		
	n the pocket. We he hole. In the De		i ∃ ⊡ ⊡ be	Sketch<2 lole<3>		
operly locate t lorer panel sele	he hole. In the De oct the sketch asso	esign		Sketch<2 lole<3>		
operly locate t	he hole. In the De oct the sketch asso	esign	ed 🗆 🖸	lole <3>		
operly locate t orer panel sele	he hole. In the De oct the sketch asso	esign	ed ⊟ ⊡ H	Sketch<2 lole<3>	Edit Suppress	

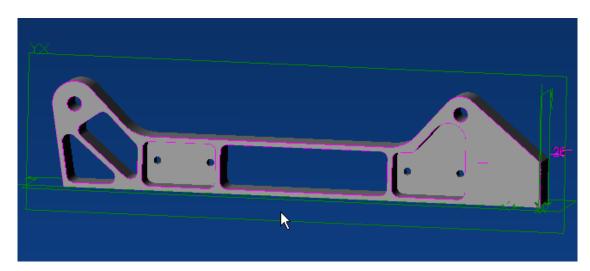
Locate the Hole center per the following dimensions. When finished, click the Select arrow to end the Edit process.

Professional						
eature	Tools Team Desig	jn				
n (24	Select	5				

The hole is now located in the correct position.

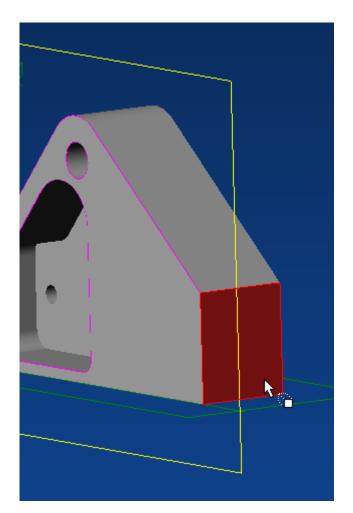

;
→ → 7 → 18
÷>

Per the drawing, we need to locate the next hole 7mm from the opposite inside wall of the pocket, and 18mm from the bottom edge. In this part of the exercise, we'll use the Feature >Pattern>Linear command to locate the second hole instead.

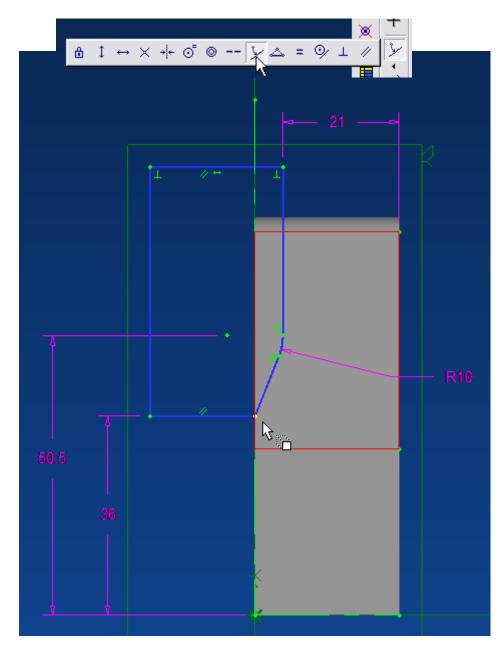

. 9						-				
h	Feature	Tools	Team Design	Window	He	lp				
Ķ	Boss				Ð	6 6	1 🗗	ø	Ø	Ø
	Cut				-					
	Thin V	Vall Boss	5							
	Thin V	Vall Cut		+ I						
	Boolea	an		•						
	Trim N	4odel								
	Thicke	en Surfa	ce							
	Shell									
1	Hole									
	Fillet									
	Chamf	fer								
	Mirror			J				_		
	Patter	n		•	Li	near	N			
-	Draft				Ci	rcular.	<u>.</u> k			
	Scale.									
	Remov	ve Face.								

The Linear Pattern panel will open. Select the hole as the Feature to pattern. You can do this from the Design Explorer panel or by selecting it directly from the model. Make sure Pattern Geometry is selected, click on the X axis either in the model window or select it from the Design Explorer, enter 36mm as the Spacing, and select copies as 2. A hole outline will appear. If necessary click Change direction, then click OK.

Features to Pattern:	Pattern Geometry	
Hole<3>		
First Direction	Second Direction Linear path:	
X-Axis		
Change direction	Change direction	
Spacing:	Spacing:	
36 mm		
Copies: 2	Copies: 1	
Label: Pattem<4>		
	OK Cancel 😧	
	\frown	



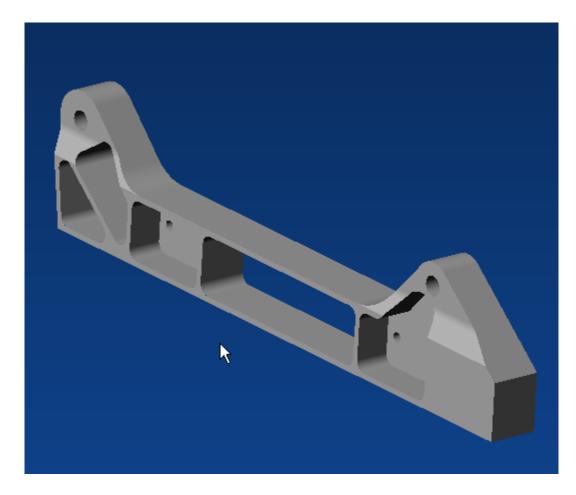
The new hole appears.



Repeat this process for the second set of holes. When complete your part should look like this.

The final step in the design process is to create a cut on one face of the motor mount. Select the flat face shown as your sketch base, and the select Activate 2D Sketch.

Create and dimension the sketch shown below. Constrain the point indicated to the line representing the front edge of the motor mount with a Coincidence constraint.



Select Extrude Cut.

Extrude	Cut	
Sketch	Type:	
Sketch<5>		
Direction	Depth	
Along Norma		
Select	Reverse	
	To Geometry	
Draft Angle	Target:	
0	Offset:	
Outward		
Label: Extru	sion<7>	

In the Extrude Cut panel, select the sketch if it's not already selected, select Through All as Type, and then click OK.

Your part should now look like this.

Because we specified the type of material from which the motor mount is fabricated, we can retrieve specific physical properties from our finished model. Click on Tools>Physical Properties.

In the Physical Properties Panel, select the level of Accuracy desired, and then click Calculate.

Prof	essio	nal			
eature	Tools	Team Design	Window	Help	
n 🖂	Sele	ction Filters		•	₽₫
	Equa	ation Editor	Ctrl+E		
		surement Tool.			
	Phys	sical Properties.	•• N		
	Che	ck Part	်etrl+Shi	ift+H	
	Che	ck Surface			
	Add	-ons		•	
	Add	-on Manager			
	Opti	ons	Ctrl+Sh	ift+0	

			~
			2
Accuracy:	Medium	Calculate	
	Low Medium	Close	

The Physical Properties are returned.

Design summary				0
Parts : 1				
Faces : 71 Edges : 199				
Vertices : 136				
Unique parts : 1				
Volume = 1.742613420E	5 mm ³			
Mass = 1.014477372 lbm	1			
Center of Mass = [1.351	779514F2 mm 2 (65444175E	mm 1 49214	3227E1 mm
Contraction Contraction		00111110E	11111, 1.49214	
Surface Area = 5.950725	712E4 mm ²			
Mass moments of inertia				
xx:1.363003544E3 mm ² l				
yz:4.103598278E2 mm²l	om zx:2.07865052	IE3 mm ⁺ lbm	xy:3.84499720	53E3 mm ⁺ⁱ br
Principal Axes and Mome				
4.134331556E2 mm ² 1.295689783E4 mm ²				
1.326018927E4 mm ²				
Accuracy:Medium	Т			
	~			
<	1111			>
Accuracy: Mediur	n 🗸		iculate	
Media			iculate	

This concludes the Motor Mount Tutorial. I hope you've enjoyed creating the part, and hope you learned a few things along the way. Look for other tutorials in the future.